Platelet-derived growth factor-stimulated versican synthesis but not glycosaminoglycan elongation in vascular smooth muscle is mediated via Akt phosphorylation.
نویسندگان
چکیده
Proteoglycans are associated with the initiation of atherosclerosis due to their binding of apolipoproteins on lipid particles leading to retention in the vessel wall. The signaling pathways through which growth factors regulate the synthesis and structure of proteoglycans are potential therapeutic targets. Platelet-derived growth factor (PDGF) is present in atherosclerotic plaques and activates phosphorylation of the serine/threonine kinase Akt. We have investigated the role of Akt in the signaling pathways for proteoglycan core protein expression and elongation of glycosaminoglycan chains on proteoglycans secreted by human vascular smooth muscle cells. The pharmacological inhibitor of Akt phosphorylation, SN30978, blocked PDGF stimulated phosphorylation of Akt. SN30978 caused concentration dependent inhibition of PDGF stimulated radiosulfate incorporation into secreted proteoglycans and the response was blocked by the PDGF receptor antagonists Ki11502 and imatinib. Analysis of the size of the biglycan molecules by SDS-PAGE showed that PDGF increased the apparent size of biglycan but this effect on glycosaminoglycan chain elongation was blocked by Ki11502 but not by SN30978. PDGF also stimulated total protein core protein synthesis assessed as (35)S-methionine/cysteine incorporation and specifically the expression of versican mRNA. Both of these responses were blocked by SN30978. This data shows that PDGF-stimulated proteoglycan core protein synthesis but not glycosaminoglycan chain elongation is mediated via Akt phosphorylation. These data identify potential pathways for the development of agents which can pharmacologically regulate individual components of the synthesis of proteoglycans.
منابع مشابه
Sustained inhibition of epsilon protein kinase C inhibits vascular restenosis after balloon injury and stenting.
BACKGROUND ε protein kinase C (εPKC) is involved in vascular smooth muscle cell (VSMC) activation, but little is known about its function in vascular pathology. We aimed at assessing the role of εPKC in the development of restenosis. METHODS AND RESULTS Rat models of aortic balloon injury with or without subsequent stenting were used. Rats were treated with the selective ψεPKC activator ε rec...
متن کاملSustained Inhibition of Protein Kinase C Inhibits Vascular Restenosis After Balloon Injury and Stenting
Background— Protein kinase C ( PKC) is involved in vascular smooth muscle cell (VSMC) activation, but little is known about its function in vascular pathology. We aimed at assessing the role of PKC in the development of restenosis. Methods and Results—Rat models of aortic balloon injury with or without subsequent stenting were used. Rats were treated with the selective PKC activator receptor fo...
متن کاملMechanical Stretch Increases MMP-2 Production in Vascular Smooth Muscle Cells via Activation of PDGFR-β/Akt Signaling Pathway
Increased blood pressure, leading to mechanical stress on vascular smooth muscle cells (VSMC), is a known risk factor for vascular remodeling via increased activity of matrix metalloproteinase (MMP) within the vascular wall. This study aimed to identify cell surface mechanoreceptors and intracellular signaling pathways that influence VSMC to produce MMP in response to mechanical stretch (MS). W...
متن کاملPotentiation of Mitogenic Activity of Platelet-Derived Growth Factor by Physiological Concentrations of Insulin via the MAP Kinase Cascade in Rat A10 Vascular Smooth Muscle Cells
Hyperinsulinemia has been shown to be associated with diabetic angiopathy. Migration and proliferation of vascular smooth muscle cells (VSMC) are the processes required for the development of atherosclerosis. In this study, we attempted to determine whether insulin affects mitogenic signaling induced by platelet-derived growth factor (PDGF) in a rat VSMC cell line (A10 cells). PDGF stimulated D...
متن کاملCathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K−Akt/p-HDAC6 Signaling Pathway
OBJECTIVE Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types of cancer cells. Here, we investigated the cross talk between CatS and HADC6 in injury-related va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular signalling
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2014